# **Exploring Hot** Peppers

-Read -Practice math -Nap -Meditate -Draw.



Ζ









# **Creating Norms for a Science Classroom**



How do we stay accountable to science and classmate

How do we make an equitable classroom?



How do we respect one another



# Our Classroom Norms

#### <u>Accountability to Science and class</u>

**Be Prepared to Listen** 

**Focused and on-topic Conversations** 

**Keep your Classmates in Check** 

**Make Safe and Smart Decisions** 

| F | 20 | <u>e</u>   | ( |
|---|----|------------|---|
|   | R  | <b>?</b> € |   |
| R | 26 | );         | 5 |
|   |    |            |   |

### <u>Equity</u>

**Be Mindful of our Words** 

Make Sure Everyone Feels Included

#### <u>spect for Each Other</u>

espect our Disagreements/ spond Politely to Comments

**Respect Classroom Materials** 

# Making Observations



# **CATCH-UP DAY!**

- MAP TESTING/Make-up  $\bullet$
- Finish Math Poster
- Linear Models Worksheet  $\bullet$
- Art Project lacksquare

## **SCIENCE WARMUP - MONDAY 5/2**

One of your classmates <u>claims</u> that the size of a hot pepper determines how spicy it will be.

Do you agree or not?

How would you test or prove whether they're right or not?

# Our Classroom Norms

#### **Accountability to Science and Class**

**Be Prepared to Listen** 

**Focused and on-topic Conversations** 

**Keep your Classmates in Check** 

**Make Safe and Smart Decisions** 

| R | 2 | <u>e</u> |
|---|---|----------|
|   |   |          |

Respect our Disagreements Respond Politely to Comments Respect Classroom Materials Share the Air (Allow others to speak)

<u>Equity</u>

Help Classmates in Need Be Mindful of our Words Make Sure Everyone Feels Included

#### espect for Each Other

# I Noticed.

- Some people didn't react
- Faces turning bright red
- Some eyes were watering
- Mucous and snot coming from their faces
- One performer was beginning to vomit
- Some performers appeared distracted and couldn't focus on playing the music.
- Some performers touched their faces
- The music changed

# I Noticed...

- Violins, trumpets, bass, mallets, cymbals, flutes, clarinettes
- Performers played faster after eating the chili
- Positions of the orchestra were out of order
- Runny noses, sweating, crying, coughing
- Beginning of the music was calm while the end was faster and more hectic
- Different chilis were consumed
- Number of people running away after the performance.

# ASKING THE RIGHT QUESTIONS

"If I had an hour to solve a problem and my life depended on it, I would use the first 55 minutes determining the proper question to ask, for once I know the proper question, I could solve the problem in less than five minutes." - Einstein





If they had the chance to drink milk/ water in between, would it make the spice bettor or worse?

## What is an Investigable Question?

An investigable question is a one that can be answered through hands-on investigation

#### THIS USUALLY REQUIRES THE COLLECTION OF DATA AND EVIDENCE

## THREE TYPES OF INVESTIGATION QUESTIONS

**Descriptive Questions:** Produce a description of an object, material, or event.

**Cause-Effect Questions:** 

Seeks to understand how one variable affects another

- **Relational Questions:**
- These types of questions ask about the relationship between two variables



## Good investigation questions are interesting.

Am I interested in finding out the answer to this question?

## Good investigation questions are those I do not already know the answers

Do I already know the answer to this question?

## Good investigation questions lead to a "plan of action" (a plan for what I need to do to answer the question, including the evidence I need to collect).

Is this question written in a way that clarifies what I need to do (observe, measure, change, etc.) to answer it?

### Good investigation questions are those that can be answered with available material.

Will I be able to find the material I need to answer this question?

## Good investigation questions are those that can be completed in a reasonable amount of time.

# TUESDAY 5/3

Read through each of the group role cards at your table. Switch with people at your table until you have read all 4.

WRITE 2 QUESTIONS YOU HAVE ABOUT GROUP ROLES.



# Our Classroom Norms

#### **Accountability to Science and Class**

**Be Prepared to Listen** 

**Focused and on-topic Conversations** 

**Keep your Classmates in Check** 

**Make Safe and Smart Decisions** 

|  | 2 | <u>e</u> |
|--|---|----------|
|  |   |          |

Respect our Disagreements Respond Politely to Comments Respect Classroom Materials Share the Air (Allow others to speak)

<u>Equity</u>

Help Classmates in Need Be Mindful of our Words Make Sure Everyone Feels Included

#### espect for Each Other

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

#### TEAM CAPTAIN

Main point of contact with teacher. The only one who should be asking the teacher questions.

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

#### SKEPTIC

Challenges each group member to explain their thinking.

#### ACCOUNTABILITY MANAGER

Makes sure members stay on task. That they can answer teacher's questions and that they know what is going on.

#### COACH

Asks every member to share their ideas and thinking. Ensures everyone is listened to and heard. Invites others to make suggestions on what to do next.

# **Designing Investigations**

#### QUESTION

**REWRITE YOUR INVESTIGATION QUESTION HERE** 

#### **HYPOTHESIS**

WHAT DO THINK THE ANSWER TO YOUR QUESTION WILL BE AND WHY?

#### **METHOD**

MAKE A DETAILED PLAN TO TEST YOUR HYPOTHESIS

#### DATA

**RECORD YOUR EXPERIMENTS RESULTS AND YOUR OBSERVATIONS** 

#### CONCLUSION

WHAT DID YOU LEARN FROM YOUR EXPERIMENT? **WAS YOUR HYPOTHESIS CORRECT?** 

![](_page_17_Picture_11.jpeg)

what would happen If they are achetter Capper? would the results be the Same?

the pepper?-franny

did it improve Do the amont their tolerance of seeds corrillate The assist of the of seeds corrillate to The aspice" of the Does eating a hot PEPR Dacs averyone get me reactions at the same time? Would eating less spicy peppers beforehand reduce your reaction to eating a very spicy pepper? How long does the spiceness last on a person, and does it depend on the spicy reaction?

# THURSDAY, APRIL 5

Sit at a table with your research group. Look at the roles below and nominate each member for a role until everyone in your group knows their position.

![](_page_18_Picture_2.jpeg)

#### **TEAM CAPTAIN**

- The group's main point of contact with the teacher when there are questions.
- Can leave the table to gather materials and tools from the teacher.
- Makes sure members are staying on task.

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

#### SKEPTIC

- Asks team members to clarify their ideas.
- Helps the team consider "How can we do this better?"
- Makes sure all team members are heard and listened to.

![](_page_18_Picture_13.jpeg)

#### TECHNICIAN

- The only team member allowed to handle dangerous materials.
- The only member allowed to use specialized or hazardous tools.
- Must wear personal protective equipment (PPE) at all times.

#### **DATA ANALYST**

- Gathers and writes down experimental data
- Keeps research papers tidy and organized.
- Communicates major findings with other groups.

# Understanding Solubility

WARMUP: AT YOUR TABLE

# SHARE A MEMORABLE MOMENT DURING 8TH GRADE RETREAT WITH THE PEOPLE

This Week's Question: What exactly is inside hot peppers that makes them so spicy?

Lesson Goal

- other in many ways
- or solvents.

• Different substances are made from different atoms or molecules, which interact with each

• Different substances dissolve in different liquids

# All physical substances are made of atoms

| )                       | PERIODIC TABLE OF ELEMENTS                     |                                          |                                                       |                                          |                                             |                                              |                                           |                                             |                                               |                                              |                                               |                                                       |                                                 |                                                 |                                                     |                                           |                                     |
|-------------------------|------------------------------------------------|------------------------------------------|-------------------------------------------------------|------------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------|
| 1<br>                   | 1 Atomic Number PubChem                        |                                          |                                                       |                                          |                                             |                                              |                                           |                                             |                                               | 2<br>Hee<br>Helium<br>Noble Gas              |                                               |                                                       |                                                 |                                                 |                                                     |                                           |                                     |
| B<br>nium<br>Metal      | 4<br>Bee<br>Beryllium<br>Alkaline Earth Metal  |                                          | H S<br>Hydrogen                                       |                                          |                                             |                                              |                                           | 5<br>B<br>Boron<br>Metalloid                | 6<br>C<br>Carbon<br>Nonmetal                  | 7<br>N<br>Nitrogen<br>Nonmetal               | 8<br>O<br>Oxygen<br>Nonmetal                  | 9<br>F<br>Fluorine<br>Halogen                         | 10<br>Neo<br>Neon<br>Noble Gas                  |                                                 |                                                     |                                           |                                     |
| 1<br>a<br>dium<br>Metal | 12<br>Mgg<br>Magnesium<br>Alkaline Earth Metal |                                          | Nonmetal G. Group Block                               |                                          |                                             |                                              |                                           | 13<br>Aluminum<br>Post-Transition Metal     | 14<br>Siicon<br>Metalloid                     | 15<br>P<br>Phosphorus<br>Nonmetal            | 16<br>S<br>Sulfur<br>Nonmetal                 | 17<br>Cl<br>Chlorine<br>Halogen                       | 18<br>Argon<br>Noble Gas                        |                                                 |                                                     |                                           |                                     |
| 9<br>K<br>ssium         | 20<br>Caa<br>Calcium<br>Alkaline Earth Metal   | 21<br>SC<br>Scandium<br>Transition Metal | 22<br>Titanium<br>Transition Metal                    | 23<br>V<br>Vanadium<br>Transition Metal  | 24<br>Cr<br>Chromium<br>Transition Metal    | 25<br>Mn<br>Manganese<br>Transition Metal    | 26<br>Fe<br>Iron<br>Transition Metal      | 27<br>CO<br>Cobalt<br>Transition Metal      | 28<br>Ni<br>Nickel<br>Transition Metal        | 29<br>Cu<br>copper<br>Transition Metal       | 30<br>Zn<br>Zinc<br>Transition Metal          | 31<br>Gallium<br>Post-Transition Metal                | 32<br>Gee<br>Germanium<br>Metalloid             | 33<br>As<br>Arsenic<br>Metalloid                | 34<br>See<br>Selenium<br>Nonmetal                   | 35<br>Br<br>Bromine<br>Halogen            | 36<br>Krypton<br>Noble Gas          |
| b<br>dium<br>Metal      | 38<br>Sr<br>Strontium<br>Alkaline Earth Metal  | 39<br>Y<br>Yttrium<br>Transition Metal   | 40<br>Zr<br>Zirconium<br>Transition Metal             | 41<br>Nbb<br>Niobium<br>Transition Metal | 42<br>Mo<br>Molybdenum<br>Transition Metal  | 43<br>TC<br>Technetium<br>Transition Metal   | 44<br>Ru<br>Ruthenium<br>Transition Metal | 45<br>Rh<br>Rhodium<br>Transition Metal     | 46<br>Pd<br>Palladium<br>Transition Metal     | 47<br>Ag<br>Silver<br>Transition Metal       | 48<br>Cd<br>Cadmium<br>Transition Metal       | 49<br>In<br>Indium<br>Post-Transition Metal           | 50<br>Sn<br>Tin<br>Post-Transition Metal        | 51<br>Sb<br>Antimony<br>Metalloid               | 52<br>Telurium<br>Metalloid                         | 53<br>I<br>Iodine<br>Halogen              | 54<br>Xee<br>Xenon<br>Noble Gas     |
| sium                    | 56<br>Ba<br>Barium<br>Alkaline Earth Metal     |                                          | 72<br>Hff<br>Hafnium<br>Transition Metal              | 73<br>Ta<br>Tantalum<br>Transition Metal | 74<br>W<br>Tungsten<br>Transition Metal     | 75<br>Re<br>Rhenium<br>Transition Metal      | 76<br>OS<br>Osmium<br>Transition Metal    | 77<br>Ir<br>Iridium<br>Transition Metal     | 78<br>Pt<br>Platinum<br>Transition Metal      | 79<br>Au<br>Gold<br>Transition Metal         | 80<br>Hg<br>Mercury<br>Transition Metal       | 81<br>TI<br>Thallium<br>Post-Transition Metal         | 82<br>Pb<br>Lead                                | 83<br>Bi<br>Bismuth<br>Post-Transition Metal    | 84<br>PO<br>Polonium<br>Metalloid                   | 85<br>At<br>Astatine<br>Halogen           | 86<br>Rn<br>Radon<br>Noble Gas      |
| 57<br>Fr<br>Incium      | 88<br>Raa<br>Radium<br>Alkaline Earth Metal    |                                          | 104<br><b>Rf</b><br>Rutherfordium<br>Transition Metal | 105<br>Db<br>Dubnium<br>Transition Metal | 106<br>Sg<br>Seaborgium<br>Transition Metal | 107<br>Bh<br>Bohrium<br>Transition Metal     | 108<br>HS<br>Hassium<br>Transition Metal  | 109<br>Mt<br>Meitnerium<br>Transition Metal | 110<br>DS<br>Darmstadtium<br>Transition Metal | 111<br>Rg<br>Roentgenium<br>Transition Metal | 112<br>Con<br>Copernicium<br>Transition Metal | 113<br><b>Nh</b><br>Nihonium<br>Post-Transition Metal | 114<br>FI<br>Flerovium<br>Post-Transition Metal | 115<br>MC<br>Moscovium<br>Post-Transition Metal | 116<br>LV<br>Livermorium<br>Post-Transition Metal   | 117<br>TS<br>Tennessine<br>Halogen        | 118<br>Og<br>Oganesson<br>Noble Gas |
|                         |                                                |                                          | 57<br>La<br>Lanthanum                                 | 58<br>Ce<br>Cerium                       | 59<br><b>Pr</b><br>Praseodymium             | 60<br>Nd<br>Neodymium                        | 61<br>Promethium                          | 62<br>Sm<br><sub>Samarium</sub>             | 63<br>Eu                                      | 64<br>Gd<br>Gadolinium                       | 65<br><b>Tb</b><br>Terbium                    | 66<br>Dy<br><sub>Dysprosium</sub>                     | 67<br>HO<br>Holmium                             | 68<br>Erbium                                    | 69<br><b>Tm</b><br>Thulium                          | 70<br>Yb<br>Ytterbium                     | 71<br>Lu                            |
|                         |                                                |                                          | 89<br>ACC<br>Actinium<br>Actinide                     | 90<br>Th<br>Thorium<br>Actinide          | 91<br>Pa<br>Protactinium<br>Actinide        | Lanthanide<br>92<br>U<br>Uranium<br>Actinide | 93<br>Np<br>Neptunium<br>Actinide         | 94<br>Putonium<br>Actinide                  | 95<br>Am<br>Americium<br>Actinide             | 96<br>Cm<br>Curium<br>Actinide               | 97<br>Bk<br>Berkelium<br>Actinide             | 98<br><b>Cff</b><br>Californium<br>Actinide           | 99<br>Es<br>Einsteinium<br>Actinide             | Lanthanide<br>100<br>Fermium<br>Actinide        | Lanthanide<br>101<br>Mdd<br>Mendelevium<br>Actinide | Lanthanide<br>102<br>Nobelium<br>Actinide | 103<br>LC<br>Lawrencium<br>Actinide |

# An atom is made of 3 primary components

Protons - In the center of the nucleus. Has a positive electrical charge

Neutrons - In the nucleus of the atom. Has no charge

Electrons -Negative electrical charge Same number of electrons as protons. Exists as a "cloud" around the nucleus

![](_page_22_Picture_4.jpeg)

## **Opposites Attract!**

Positive protons repel other protons Negative electrons repel electrons **BUT** 

Protons and electrons attract each other

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

### The electrical charge of atoms can pull them together to make a molecule

# What Is a Molecule?

A MOLECULE IS AN ELECTRICALLY NEUTRAL GROUP OF ATOMS JOINED TOGETHER BY CHEMICAL BONDS

![](_page_24_Picture_3.jpeg)

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

Oxygen

Methane

A molecule may consist of two atoms of the same element or many atoms of different elements.

![](_page_24_Picture_11.jpeg)

Caffeine

DNA

# **RECIPROCAL READING!**

# Tuesday, May 24

Sit with your research group and take out yesterday's What is Solubility article.

Everyone should also have today's <u>Solubility Lab Worksheet</u>

Read the article to define the following terms: **1. Solubility** 2. Dissolve **3. Like-Dissolves-Like 4.**Polar Molecule **5. Non-polar Molecule** 

# ASSEMBLE INTO GROUP ROLES!

Sit at a table with your research group. Look at the roles below and nominate each member for a role until everyone in your group knows their position.

![](_page_27_Picture_2.jpeg)

#### **TEAM CAPTAIN**

- The group's main point of contact with the teacher when there are questions.
- Can leave the table to gather materials and tools from the teacher.
- Makes sure members are staying on task.

![](_page_27_Picture_7.jpeg)

| 7. | 2  |  |
|----|----|--|
| U- | U. |  |
|    |    |  |

#### REPORTER

- Asks team members to clarify their ideas.
- Collects ideas and observations from each group member
- Reports findings and team conclusions at the end of class.

![](_page_27_Picture_13.jpeg)

#### TECHNICIAN

- The only team member allowed to handle dangerous materials.
- The only member allowed to use specialized or hazardous tools.
- Must wear personal protective equipment (PPE) at all times.

#### **DATA ANALYST**

- Gathers and writes down experimental data
- Keeps research papers tidy and organized.
- Communicates major findings with other groups.

## **Beating the Heat!**

## <u>What makes hot chili peppers so spicy?</u>

Yesterday's lesson goal: We learned that substances made of different atoms or molecules can interact with each other differently.

By the end of class, we'll be able to decide what liquid we should use to separate spice from chili peppers

## FRIDAY, MAY 27: WARMUP

**Polarity** is the <u>uneven sharing</u> of electrons on a molecule which results in a positive charge on one side and a negative charge on the other.

A non-polar molecule evenly distributes its electrons so there is no strong charge on one end or another.

Decide which image below represents a polar or non-polar molecule

![](_page_29_Figure_4.jpeg)

![](_page_29_Figure_5.jpeg)

long hydrocarbon chain

![](_page_29_Picture_7.jpeg)

## 2-2-0 DISCUSSION **THANK YOU FOR YOUR FEEDBACK!**

- A lot of writing

# Celebrations

- Understandable explanations and instructions
- The experiments were interesting and fun!
- Most teams worked well together
- Hypotheses were sometimes right

![](_page_30_Picture_10.jpeg)

Not all roles were hands-on

• Some groups needed more time to finish labs • Some vocabulary and concepts still unclear.

## **QUESTIONS FROM LAST LAB**

## THE EXTRACTION PROCESS

![](_page_32_Picture_1.jpeg)

Add both liquids together

![](_page_32_Picture_5.jpeg)

Shake it up

**STEP FOUR:** 

Wait, A and B will separate, and the solute will be extracted into B

## FRIDAY, JUNE 3 - SCIENCE

| Sit wit             | h your research grou  |
|---------------------|-----------------------|
| Match the following | g terms with their de |
| <u>Polar</u>        | <b>Extraction</b>     |
| <u>Solubility</u>   | <b>Dissolve</b>       |
| <u>Solvent</u>      | <u>Solute</u>         |

The molecule in chili peppers responsible for making them spicy A process to separate a desired substance from a mixture When something has completely mixed with its solvent Similar substances tend to mix bettter with themselves than with opposites Uneven sharing of electrons along a molecule Even sharing of electrons across a molecule Something that dissolves when placed in a liquid A substance, often a liquid into which some things dissolve The ability of a substance to completely dissolve in a solvent.

ps. efinitions below: <u>Like-dissolve-like</u> <u>Non-polar</u> <u>Capsaicin</u> The story so far...

Phenomena and Question Making 1. Design a Scientific Investigation 2. Salsa Making 3. Solubility & Polarity 4. 5. Extraction

## Essential Question: What makes chili peppers spicy?

Agenda::

Warm up

Review

**Solvent Evaporation** 

Post taxes on DP

Develop a method and process to separate alcohol from capsaicin.

Understand how evaporation can be used to separate different liquids.

#### Today's Lesson Goal:

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

## THE EXTRACTION PROCESS

![](_page_37_Picture_1.jpeg)

Add both liquids together

![](_page_37_Picture_5.jpeg)

Shake it up

**STEP FOUR:** 

Wait, A and B will separate, and the solute will be extracted into B

## **EVAPORATING THE SOLVENT**

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

## Evaporation - The conversion of liquid into its gas form.

## Different liquids evaporate at different temperatures and liquids with lower boiling points evaporate faster.

Boiling point of Ethanol: 173 °F Boiling Point of Capsaicin: 410°F

### HOW CAN WE EVAPORATE THE SOLVENT CONTAINING OUR CAPSAICIN?

|                     | () YO IT    |              |                            |
|---------------------|-------------|--------------|----------------------------|
| RENT:               | SINGLE      | MAPPIED      | KIDS                       |
| PHONE :             | A125        | 1250         |                            |
| SDGE :              | \$ 130      | \$ 260       |                            |
| CABLE :             | 465         |              |                            |
| MAINT :             | \$250 (OWN) |              |                            |
| CAR: D              | NONE BY YOU | \$ 210       |                            |
| CAR INS:            | #86         | \$ 172       |                            |
| FUEL                | \$ 120      | \$ 240       |                            |
| INSURANCE           | 版107        | \$107        |                            |
| HEALTH              | \$400       | #800         |                            |
| FODD                | DONE BY YOU |              |                            |
| CHILDREN<br>MEDICAL | INCLUDED    | WITH CAPPEED | 150                        |
| CHILDCART           | 2           |              | \$ 950 FUR 1<br>1400 FOR 2 |
| TOYS                |             |              | # 30                       |
| FOOD                | # 50        | 29220        |                            |
| MEDICA-             | \$ 20       |              |                            |
| PERSONAL.           | N-1         | 850          |                            |
| HARTAIAH            | is and      | 1320         |                            |
| CLOTHIND            | K 10        | \$ 20        |                            |
| DRY CLEAT<br>HEALTH | 2LUB \$ 30  | \$ 60        |                            |

```
ENTERTRINMENT
 SPOTIFY $10
  MOVIES $15 $30
  CONCERSS $190 PER LONCERT SO $7.5 PER MONTH
  SPORTING EVENTS # 90 PER $7.5 PER MONTH
  NETELIX $15
            $9
  PRIME
             $17
  HULU
             # 8
  DISNEY +
             10 10
   HBO MAY
LOANS
   PUT YOUR COLLEGE LOAN HERE
SAVIN65
   WHATEVEN YOU HAVE LEFT
```